Tensor power sequences and the approximation of tensor product operators
نویسندگان
چکیده
منابع مشابه
A Note on Tensor Product of Graphs
Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.
متن کاملBEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES
We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...
متن کاملTractability of Tensor Product Linear Operators
This paper deals with the worst case setting for approximating multivariate tensor product linear operators defined over Hilbert spaces. Approximations are obtained by using a number of linear functionals from a given class of information. We consider the three classes of information: the class of all linear functionals, the Fourier class of inner products with respect to given orthonormal elem...
متن کاملNonlinear tensor product approximation of functions
We are interested in approximation of a multivariate function f(x1, . . . , xd) by linear combinations of products u (x1) · · ·u(xd) of univariate functions u(xi), i = 1, . . . , d. In the case d = 2 it is the classical problem of bilinear approximation. In the case of approximation in the L2 space the bilinear approximation problem is closely related to the problem of singular value decomposit...
متن کاملOn the Exponent of Triple Tensor Product of p-Groups
The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 2018
ISSN: 0885-064X
DOI: 10.1016/j.jco.2017.09.002